

MAX.PRO.ECO

Burn-out furnaces

TYTAN furnaces with microprocessor controls. They are modern, energy-saving devices for precise heating of casting molds. A choice of four types of programming and three sizes of a chamber allow to fit the parameters of the furnace to the needs of the user.

The latest generation control system has been implemented in TYTAN MAX series furnaces. 30 programs and a readable, alphanumeric display allow full control of the heating process and to achieve perfect work results.

PERFECT PRECISION

Microprocessor programmers guarantee the accuracy of the temperature of 1°C. They can be programmed to one of three stages of increasing and maintaining of the temperature. Each parameter like: speed, temperature of the stage, holding time are set individually what allow for proper expansion and therefore ideally fitting works.

ALWAYS ON TIME

Microprocessor programmer is equipped with a daily switcher with a delay of up to 99 hours. A user has the ability to accurately determine when the ring is ready for casting.

PROCESS UPHOLDING

In case of power outage there is an electronic backup activated. After the reactivation of the current, furnaces continue the set process of heating. Tytan is a furnace which is protected against interferences in the power grid.

100% STEEL

Due to a high temperature and emitted gases during the heating process, a chamber housing of TYTAN furnace is entirely made of high quality stainless steel which is resistant to aggressive substances and temperature. High quality housing components significantly increase durability of the device.

EXHAUST EXTRACTOR

The ceramic chimney allows to exhaust fumes by connecting an optional exhaust Operating of exhaust extraction is controlled automatically for the duration of the process.

CURRENT SECURITY

Safety switch completely disconnects power of heating elements after opening the door of the chamber and protects the user from possible electric shock. It protects the furnace from overheating in case of leaving the door open during the warm-up.

Fully ceramic chamber

A chamber module is hard and uniform because it is made by molding under pressure. The structure of the sides are characterized by high density. Heating coils are protected against mechanical damage and the effects of aggressive gases which significantly increase their durability.

Not only a socket, door and a chamber entrance are made of full ceramics. These elements are particularly vulnerable to damage from working with pliers and a ring. Pressed ceramics protects them from defects.

The chamber is optimally roomy. Depending on a version, there are from 6 up to 16 rings size "6" or from 2 to 8 ring "9" (forms for skeletal dentures).

12x,,6" M (medium)

20x,,6" L (large)

4D heating

The heating coil, a Kanthal type has been formed linearly on the 4 walls of the socket. That ensures an even distribution of temperature inside and provides the ideal heating of rings regardless of their size or placement in the chamber.

Quartz cover of thermocouple

The temperature sensor is placed in the quartz cover, which protects it against mechanical damage and the effects of aggressive substances of the rings. Quartz cover has no thermal inertia (like ceramic covers) that is why the measurement of the thermocouple is extremely accurate.

Up to 1000°C within 60 minutes

The heating elements of TYTAN furnace have been designed to optimize the heating process. They allow heating of the furnace up to 1000 °C within 60 minutes.

Why TYTAN?

- ALL MUFFLE ELEMENTS MADE OF CERAMICS
- CHAMBER HOUSING OF STAINLESS STEEL
- THERMOCOUPLE COVERED WITH QUARTZ
- OPERATING CONTINUED AFTER POWER FAILURE
- HIGHLY PRECISE TEMPERATURE MESUREMENTS
- EVENLY TEMPERATURE IN THE FURNACE